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At each step in a rollout policy, the following closed-loop optimization is solved: 

Rollout
Online Planning 

A robot following FIRM-based rollout plan. 
Rollout is an online planner. In the planning phase, the belief space is 
searched to determine which path gives the least cost to go, just as in 

FIRM. This is the path chosen to follow. Rollout re-plans iteratively along 
each edge and node, updating the belief state and path plan more frequently. 
This ensures the maximum amount of certainty possible to obtain the best 

policy.

Methods:

POMDP Definition
A 6-tuple (S, A, O, T, Z, R):

S: State space
A: Action space
O: Observation space
T: Transition function

T(s, a, s’) = P(St+1 = s’ | St = s, At = a)

Z: Observation function
Z(s, a, o) = P(Ot+1 = o | St+1 = s, At = 

a)

R: Reward function
R(s,a)

Methods:

The “curse of history” is a problem presented by modeling the belief space by 
POMDPs. The exponential growth of outcomes for a single belief is shown here. 

To break the curse of history, one can simply steer the belief directly using funnels (local 
feedback controllers) to redirect large sets of posteriors into a pre-computed belief. 

FIRM is the belief space variant of other probabilistic roadmaps.
• Updates roadmap at each belief state
• No longer encounter curse of history
• Preserves optimal substructure policy (no edge dependence), no need 

for expensive re-planning

Gaussian Belief

FIRM 
(Feedback-based Information Roadmap)

Offline Planning

Paths defined by previous methods of motion planning vs. those as a result of new motion 
methods that incorporate both motion and sensing uncertainty. The larger ellipses at each 

node represent a larger amount of uncertainty. 

Use new variations on FIRM algorithm that allow for more exact motion planning 
by now taking into account both motion and sensing uncertainties in the 

environment. These methods take into account noise, previous action, and current 
state, and are the first to consider all three when motion planning

Abstract: 
The concept of motion planning under uncertainty for planetary navigation is very important as it pertains to a machine’s goal to be able to operate autonomously from a start state to a goal state using internal operation and path planning methods. 
The greatest challenge of enabling such autonomous operation in a system is incorporating the uncertainty in location and environmental conditions that a robot experiences. When motion planning, a robot must be able to go from a start state to a 
goal state while taking into account such uncertainties in the environment, avoid any obstacles, and calculate risk to determine the best path for doing so. We approach the problem of enabling autonomous operation in a system as an optimization 
problem that minimizes time and risk (cost to goal). Minimizing such things allow for accurate and efficient motion and path planning by decreasing uncertainty in the environment. Specifically, we address the problem of autonomous robotic 
planning under motion and sensing uncertainties and methods by which to compute the shortest, most cost-effective path between start state to goal state.

Conclusions:

Motion Model
, p(wk |xk , uk)

Cost Function 
(to choose an optimal policy)

Sensing Model
,  p(vk |xk )

Belief Evolution Model
(belief state and its update)

bk+1 = ⌧(bk, uk, zk+1)

Policy
π(·) :  𝔹	→ 𝕌:
Uk = π(bk), ∀bk∈ 𝔹

Incorporate sensing uncertainty 

The cost of taking action u at belief b is c(b,u): 𝔹×𝕌 → ℝ
≥ 0

The cost-to-go function is J π(·): 𝔹×𝕌 → ℝ
≥ 0 from b0 under policy π

as

POMDP Formulation: 
The Belief MDP Problem

Problem: Curse of History

Introduction: Results: 
FIRM and Rollout Comparisons and 

Applications

Rollout-based execution of the FIRM policy. 
FIRM does its planning offline while rollout does its planning online. 

Proposed Future Work:

The real world is full of uncertainty. Near-optimal long range solvers are in great need 
because they ensure that situations with this description can indeed be modeled. By 

continuing the editing that was done on previous code and by adding to the design on 
methods which go beyond the state-of-the-art such as FIRM, we can one day work our 
way up towards solving the ultimate minimization problem—that is the one presented 

by minimizing the uncertainties that come with modeling in space exploration. 

A graphic representation of simulation results compares the number of FIRM nodes with 
the number of time steps, the sum of traces of covariance, and the total cost of FIRM, 

FIRM-Rollout, and FIRMCP

Increasing the number of nodes in the search space during simulation closes the 
gap between running the FIRM algorithm and the rollout algorithm. Here we see 
the path produced by FIRM’s planner in yellow and that produced by rollout in 

green. 

• Previous path planning methods plan in a 
state space to incorporate motion 
capabilities and FIRM takes things a step 
further and plans in the belief space to 
enable motion and sensing capabilities 

• FIRM solves the problem of the curse of 
history in POMDPs and allows large 
problems to be solved

• The optimality of POMCPs (POMDPs with 
Monte Carlo planning) and the scalability of 
FIRM to produce FIRMCP, a near-optimal 
long range belief planner

• POMDPs allow us to model real 
world situations because they account 
for sensing and motion uncertainties 
in an environment 


