
 1 

Emilie Naples, Department of Mathematics 

University of California, Riverside 

NASA MIRO FIELDS Program 

JPL Robotics Research Intern, Summer 2017 

Motion Planning Under Uncertainty for Planetary Navigation 

 

ABSRACT 

This paper will discuss the concept of motion planning under uncertainty for planetary 

navigation as it pertains to a machine’s goal to be able to operate autonomously from a start state 

to a goal state using path planning methods. The greatest challenge of enabling such autonomous 

operation in a system is incorporating the uncertainty in location and environmental conditions 

that a robot experiences. When motion planning, a robot must be able to go from a start state to a 

goal state while taking into account such uncertainties in the environment, avoid any obstacles, 

and calculate risk to determine the best path for doing so. We approach the problem of enabling 

autonomous operation in a system as an optimization problem that minimizes time and risk (cost 

to goal). Minimizing such things allow for accurate and efficient motion and path planning by 

decreasing uncertainty in the environment. Specifically, we address the problem of autonomous 

robotic planning under motion and sensing uncertainties and methods by which to compute the 

shortest, most cost-effective path between start state to goal state.  

 

INTRODUCTION   

The main goal when planning under uncertainty for planetary navigation is to minimize 

cost when going from one goal to another. To be able to do so, an agent must be able to operate 

under uncertain conditions by finding the most effective path and following it. The most 

effective path is defined as the path which allows the agent to go from one state to anther while 

minimizing uncertainty and risk to the autonomous machine. This is done by an optimization 

problem where optimization is performed over a series of different potential paths.  

Existing path planning methods for motion planning under uncertainty provide several 

results. These paths take the certainty of motion into account. On these paths, the certainty of the 

robot's location is considered and propagated upon the path options in an open-loop fashion. In 

other words, data and information from sources around the area are not incorporated into the 

algorithm for path planning. More recent methods do incorporate such information gathered by 

sources around the terrain, allowing for more accurate planning. In these newer, more practical 

methods, updates about the robot's surroundings are performed periodically. They also take 

motion and sensing uncertainty into account, thus allowing for more conservative path planning.   

 

a) Motivation in Robotics 

 
Figure 1 
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In the figure above, see two path options that the robot can follow, created by a path 

planning algorithm. Ellipses represent covariances at each node along the path, giving an 

overview of the uncertainty of the robot's state at that location (node). The path outlined by blue 

ellipses is that which has the most uncertainty, and hence has the largest ellipses. The path 

outlined by the green ellipses is more certain, and hence, has smaller covariances along each 

node because it is formulated by taking information from the surrounding environment into 

account. When planning under uncertainty, older methods later discussed would take into 

account the uncertainty of motion, defined mathematically by xk+1. f(xk ,uk,wk) accounting for 

state, control, and motion noise in the surrounding environment, respectively. xk+1 represents the 

state reached after the previous state xk, uk represents control, and wk represents motion noise. 

We model this using a Markov decision process, or MDP explained in the next subsection. 

Newer path planning methods are more efficient in the way that they take into account both 

motion and sensing uncertainty. They are also defined by xk+1 = f(xk,uk,wk) accounting for a 

robot's state, control, and motion noise. In addition, since these newer methods also take sensing 

uncertainty into account, they incorporate sensor noise represented by zk = h(xk, vk)  where vk 

represents sensor noise and xk still represents the previous state of the robot. 

 

 
Figure 2: A system is represented by a state, control, and motion noise. Sensors detect 

information gathered by the system. It is measured and sent to the state estimator where the most 

efficient action for the robot to take is determined. 

 

 
Figure 3: A more detailed and internal view of Figure 2. The process in which an agent 

determines the best action based on outside information from the environment. 
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b) Markov Decision Processes 

A Markov decision process, or MDP, is a decision-making process used to mathematically 

model situations where an outcome is partly random and partly due to a set of actions chosen by 

a decision maker [5]. In an MDP, the state of the agent is known, so uncertainty is not highly 

accounted for. At each time step in a modeled MDP, the decision-making process allows the 

decision maker to choose any action available in a present state, s, of the agent to then move to 

another state, s', thus continuing along a path and moving closer to a set goal state. A reward is 

then given to the decision maker after it brings the process into the new state. MDPs model 

situations where the state of the agent is known. These are situations in which only the location 

of the agent has been taken into account, and not that of its surroundings. 

However, in cases where the state of the agent is not known, i.e. in the presence of motion 

and sensing uncertainty, a partially observable Markov decision process, or POMDP, is used 

instead of an MDP to model the decision-making process. Like an MDP, a POMDP allows the 

agent to complete a set of actions in order to go from a start state to a goal state without collision. 

But, in situations modeled by POMDPs, a probability distribution is created over all possible 

states of the agent since its exact location is unknown. In other words, the difference between a 

POMDP and an MDP is that a POMDP models situations in which we account for the location of 

the agent and its surroundings. 

Specifically, a POMDP is a 6-tuple (S, A, O, T, Z, R) with the following components: 

S: state space 

A: action space 

O: observation space 

T: Transition function 

T(s,a,s') = P(St+1 = s') | St = s, At = a) 

Observation function: 

Z(s,a,o) = P(Ot+1 = o | St+1 = s, At = a) 

 Reward function: 

  R(s,a) 

At each time step, the environment is in some state. The agent takes an action, determined 

previously by a planning algorithm, which causes the environment to transition to the next state, 

s', with probability T(s,a,s'). At the same time, the agent receives an observation o which 

depends on the new state. The new state has probability O(o,s',a). Once the agent has reached the 

next state, s', it receives the reward previously determined by the planner. The goal is for the 

agent to choose actions at each time step that maximizes the expected future discounted reward. 

This action selection strategy is called a policy. A policy, once determined from the information 

given to the state estimator, maps each state, s, to a desirable action, a. The policy determined by 

the estimator is the solution to the POMDP [4]. 
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Figure 4: A partially observable Markov decision process representation with 3 states (s0, 

s1, s2, s3), and 3 corresponding observations (o0, o1, o2, o3), actions (a0, a1, a2, a3), and rewards 

(R0,R1,R2,R3) respectively.  

 

When path planning, random points sampled from the environment are put together to 

form a search space. Random points in a search space are sampled so that the robot can get a feel 

for the surrounding environment. The possibilities are grouped together to form a map, and the 

state estimator is responsible for determining the best path from all the possibilities. As 

previously mentioned, an MDP is used to model these situations in which the state of the agent is 

known. However, in a POMDP, where its location is not known as it is in an MDP, each state in 

the map is associated with a corresponding belief. The belief represents the probability that an 

agent could be at that state at a given time. A POMDP models situations where there is a 

considerable amount of motion and sensing uncertainty, i.e. we do not know the state or 

"location" of the agent. Because of this, a belief b is necessary to define. Each belief is said to be 

a mean x and a covariance P, each representing a unique "location". The word location is in 

quotes here because in belief space where POMDPs are modeled, the robot's location is not 

certain. It only makes sense to say that a robot has a certain location in state space. It is 

important to understand that when searching for a path from a start state to a goal state for an 

agent to follow, the sampled points form a map of states in the state space where motion 

uncertainty is taken into account. When both motion and sensing uncertainty are accounted for, a 

corresponding map of the state space is formed by the probability distribution over all states. The 

space in which this map is defined is called the belief space. A visual representation follows. 

 

 

 
Figure 5: A probabilistic roadmap from sampled points in an environment. 
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Figure 6: Belief nodes with mean and covariance corresponding to each node in the state 

space.  

 

 
Figure 7: The resulting graph in belief space with belief nodes bc, each defined by a mean 

v and a covariance P.  

 

Some benefits of using POMDPs for planning applications are that they allow more 

realistic path planning situations to be modeled for study and direct action. This is because the 

POMDP model allows the sensing and motion uncertainty experienced in actual environmental 

settings to be more easily incorporated into problems. They enable the optimization of any user-

defined function. While this is very beneficial, POMDPs are still difficult to solve for large 

problems because of implications known as the curse of dimensionality and the curse of history. 

The curse of dimensionality refers to the increasingly large search space that must be considered 

when searching for a path from a start state to a goal state. For each state, there is a new series of 

paths that can be followed from it. The number of outcomes for each node, as a result, grows 

exponentially as search space is enlarged due to time. The curse of history is another result of the 

growing number of possible paths from each node that robot can take. As seen in Figure 8, the 

covariance at one node is defined by all of the previous nodes encountered to get there. In other 

words, previous paths must be incorporated. As mentioned, this a problem for larger search 

spaces. A solution to this problem is described in the Results section.  

 

 
Figure 8: Curse of history. Exponential growth of outcomes for a single belief.  
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We now discuss at length some types of state-of-the-art POMDP solvers which are 

effective at computing a cost efficient path from a start state to a goal state under conditions of 

uncertainty. 

 

METHODS 

a) Point-based POMDP solvers 

Point based POMDP solvers compute a path from a start state to a goal state by computing a 

value function over a finite subset of the belief space. This action approximates the belief space 

and therefore makes it easier to develop a policy. For any point (belief) in the set, the optimal 

action to reach the goal is determined by software that is responsible for creating an action 

observation sequence. This tree of different paths provides the cost to goal from a belief in the 

belief space. Each node can be described as a tuple containing all nodes used to get to that 

location on the map. Point-based algorithms explore the belief space, focusing on the reachable 

belief states while maintaining a value function. In other words, a variant of value iteration is 

performed where backup is done only at selected beliefs. This avoids exponential growth of the 

value function caused by the growing dimension which is proportional in growth to the number 

of states [4]. For better understanding and explanation, the following information on policies and 

value functions from MDPs and POMDPs is taken from the Policies and value functions section 

from reference source [4] in the Reference section of this paper. 

 

"The main goal of MDP planning (and POMDP planning in the case of both motion and 

sensing uncertainty) is to discover an action-selection strategy, called a policy, defining how the 

agent should behave (i.e. what actions it should take) to maximize the rewards it obtains. … In 

this discounted case, we assume that earlier rewards are preferred, and use a predefined 

discount factor, y ∈ [0,1). This reduces the importance of later rewards.  

A solution to an MDP, and that of a POMDP as well, is a policy, 𝜋, that maps each state 

to a desirable action with expected stream of discounted rewards. The agent seeks a policy that 

optimizes the expected infinite stream of discounted rewards. 

Point-based POMDP solvers are generally effective for maps that contain a large 

number of nodes in the belief space, avoiding the problem of dimensionality that occurs when the 

belief space grows exponentially with the number of states. Point-based POMDP solvers take a 

sample of points around a belief node in the belief space using an MDP. The sample is within 

only a certain reachable space of each belief node. From the sample around each node, an 

approximation is created rather than a sample of the whole space. An approximately optimal 

value function is computed from the samples and is used to find the best path from node to node. 

However, MDP-guided sampling is usually only effective when uncertainty is not high and there 

is not a long series of information gathering. When there is uncertainty and a long history of 

information gathering, the curse of history problem arises. Each edge, or “piece” of the path, is 

dependent on the last and how that state was reached, (as mentioned in the previous subsection 

of this paper).  

For each node in the belief space, a map of paths is created from the start node to all 

others in the belief space. For this reason, point-based POMDP solvers require that each visited 

node be remembered by the planner in order to compute the entire path from the start state to the 

goal state. For each start node, a path is created by visiting other nodes in the belief space until 

eventually reaching the goal. Each path, J, consists of the nodes "visited" between the start and 

goal states and is thus defined mathematically by adding each of the belief nodes together as 
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J = ca1 +ca2 +ca3 + .... 

 

where a represents each action and c represents the corresponding cost of each action. In short, 

the problem can be fixed by scaling the cost of each action as 

 

 

J = ca1 + c2a2 + c3a3 + …. 

 

To conclude, value function computations in point-based solvers are restricted to a finite 

subset of the belief space, allowing only location value updates for a subset [of the belief space]" 

[4]. This is known as point-based value iteration. It is what is used to avoid the exponential 

growth of the value function mentioned above and is thus applicable for domains with relatively 

large state spaces. 

 

b) Sampling-based POMDP solvers 

In short, sampling-based POMDP solvers sample nodes to form a state space. Those which 

hit obstacles are rejected and the ones remaining are connected, forming a belief node roadmap 

of possible paths from the start state to the goal state. Sampled values at each belief node on the 

roadmap are then determined by software algorithms, and eventually, the whole space is 

"covered" by a probabilistic roadmap, thus revealing all possible states of the robot and its  

surroundings at each. 
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c) Gaussian POMDPs 

A POMDP models path planning situations that account for both motion and sensing 

uncertainty. Both types of uncertainty are incorporated because of the lack of knowledge of the 

location of the agent. Thus, a probability distribution over all states must be kept in order to plan 

in this way. In the POMDP path planning model, states in space are represented as beliefs where 

a probability distribution over all states is created. We will take for granted without explanation 

here that the distribution over the state space is assumed to be Gaussian. Therefore, the 

probability that the robot is at a certain state can be represented by a bell-shaped curve for each. 

It is known that the area in two dimensions under the Gaussian curve if bisected by a plane 

results in some area represented by an ellipse. Thus, at each node we have a corresponding 

distribution represented by the ellipse around it. The ellipses at each node indicate how likely it 

is that the robot is in that state. These ellipses are what defines each belief state in this way, 

specifically by a mean and covariance. 

 

 
Figure 10: Each belief state b is defined by a mean and covariance.  
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Figure 11: Ellipses at each node along a path in belief space. Due to increasing sensing 

and motion uncertainty, ellipses get larger as the agent moves farther from its starting 

point. 

 

In other words, the ellipses at each node represent the level of uncertainty at each state. 

Note: Situations modeled by MDPs are those which account for the uncertainty of a robot’s 

location. However, MDPs do not account for the uncertainty in the environment. Because of this, 

we still encounter some uncertainty in terms of surroundings. Because of this, the ellipses that 

are a result of Gaussian distributions modeled by MDPs are larger than those modeled by 

POMDPs. Larger ellipses correspond to more uncertainty, or equivalently, less information. So, 

the ellipses represented by POMDP Gaussian distributions on the nodes of the belief space tend 

to be smaller since their models account for motion and sensing uncertainties, thus enhancing 

their capabilities with more information. Ellipses represented by POMDPs are generally smaller 

than those modeled by MDPs for this reason. Belief states where there is more certainty are those 

in which there has been more information gathered from an agent's sensors. Figure 12 shows a 

path consisting of belief nodes formed by a planner. The nodes on the entire right side of the path 

have smaller ellipses than those on the left side of the path. This is because the robot's sensors 

were able to detect more information about the terrain on the right than the terrain on the left. 

 

 
Figure 12: Ellipses are smaller on the right side of the path at where the terrain contains more 

features, more information. Ellipses are larger where there are less features, corresponding to less 

certainty. 

 

d) FIRM and Rollout 

FIRM (feedback information roadmap) is an enhancement to state-of-the-art path 

planning methods and POMDP solvers mentioned before because it is a method which 

eliminates the complications posed by the curse of history. It has been stressed throughout the 
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introduction of this paper that path planning with motion and sensing uncertainties taken into 

account is vital to realistic planning. FIRM is the method that meets all the requirements stated in 

the POMDP introduction section that are necessary for doing so. It is the first path planning 

method that takes into account these two types of uncertainties while also accounting for noise, 

previous action, and current state of the agent. In FIRM, path edges are independent of each 

other, so it is no longer necessary to remember each previously visited node in a sequence to 

develop a path as a whole. All of a sudden, large POMDP problems are now solvable since there 

are no longer an exponential number of outcomes stemming from a single belief. FIRM is the 

belief space variant of other probabilistic roadmaps which puts the belief space components 

mentioned in Gaussian POMDPs into practice.  

FIRM is able to accomplish this by updating the roadmap at each belief state. This is 

what eliminates edge dependence and the need for extensive re-planning. FIRM does its planning 

offline. In the planning phase, the belief space is searched to determine which path is the least 

“expensive”, (i.e. minimizing cost-to-go). Then in the execution phase, the robot gets the results 

and executes the best policy found, thus forming a path [2].  

The rollout policy in belief space reduces the computational cost a step further because it 

does not approximate the system with a deterministic one, and it avoids local minima in the 

optimization problem used in computation by suboptimal policy that approximates the true cost-

to-go beyond a certain horizon. FIRM is an offline planner, whereas rollout is an online planner. 

This means that in the planning phase, the belief space is searched to determine which path gives 

the least cost to go, just as in FIRM. This is the path chosen to follow. Then, rollout re-plans 

iteratively along each edge and node, updating the belief state and path plan more frequently. 

This ensures the maximum amount of certainty possible to obtain the best policy [2]. 

 

 

 
Figure: 13 Rollout-based execution of the FIRM policy. 

 

RESULTS 

a) Overview 

We have combined the capabilities of previous state-of-the-art path planning methods 

and models discussed in the above sections to incorporate the motion and sensing uncertainties in 

an environment. Being able to do so is something new that makes our developed feedback-based 

information roadmap (FIRM) method different from previous path planning methods like 

probabilistic roadmaps and rapidly expanding randomized tree searches, which only accounted 
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for the motion uncertainty in an environment. These previously developed methods for path 

planning sample points in state space, whereas the POMCP, FIRM, FIRM-rollout, and FIRMCP 

(FIRM with Monte Carlo planning) methods plan in a belief space while also avoiding the curse 

of history problem encountered when solving large POMDPs. In FIRM, a map is formed based 

on information about an environment’s terrain and a probability distribution over all states in that 

map is created to incorporate the sensing uncertainty previously left out of older methods of path 

planning. This sensing (observation) in the path planning algorithm helps reduce the state 

uncertainty (risk) by filtering. Specifically, it reduces uncertainty by using Bayesian inference to 

update the overall probability distribution on each of the belief states at each node, thus 

providing more accurate information about the roadmap and a less costly potential path as time 

progresses. With good observation, a costly, suboptimal path can be an efficient near-optimal 

path [A].  

Our rollout based execution of the FIRM policy evaluates each path’s uncertainty (risk) 

and optimizes our developed motion plan over it. As a result, however, the search space gets 

much larger, and the current belief state computed from recursive Bayesian filtering depends on 

each previously visited state. This is known as the curse of history. We have solved this issue by 

incorporating feedback controllers, which merge belief states. In other words, we directly control 

the belief in order to break the curse of history presented by implementing the POMDP model in 

motion planning under motion and sensing uncertainty. If a belief can be steered directly, it can 

be predefined and break the dependence on the path as whole, thus breaking the curse of history.  

To summarize more specifically, we have found a way to incorporate motion and sensing 

uncertainty into path planning while avoiding edge dependence (i.e. the dependence on each 

belief node previously visited by a path) and the curse of history. This is what is done by steering 

each belief directly. Steering each belief is partially achieved by classical controllers that act like 

funnels. As directly mentioned in [1], “we construct a stationary linear quadratic Gaussian 

controller-based (SLQG-based) instantiation of this generic framework, called SLQG-FIRM, 

where we provide a specific node sampler and connector. In SLQG-FIRM we first focus on the 

kinematic systems and then extend it to dynamical systems by restricting sampling space to the 

equilibrium space. SLQG-FIRM is the first method that generalizes the PRM to the belief space 

such that the incurred costs on different edges of the roadmap are independent of each other, 

while providing a straightforward approach to sample reachable belief nodes. This property is a 

direct consequence of utilizing feedback controllers in the construction of FIRM. Based on this 

property, the FIRM framework breaks the curse of history in POMDPs (Pineau et al., 2003), and 

provides the optimal feedback policy over the roadmap instead of returning a single nominal 

path” [1]. Side note: The programming code allowing this process to happen was also perfected 

to reach a much faster speed in simulation. 
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Figure 14: Funnels (local feedback controllers) used to redirect large set of 

posteriors into a pre-computed belief. 

 

b) Simulation Results 

During simulation, increasing the number of nodes sampled in the belief space provided 

different results for the two paths produced by the FIRM and rollout policies. FIRM is 

represented by the yellow path and rollout is represented by the green path.  

 

 
 

Some variations on FIRM were also explored. The next figure compares the number of 

FIRM nodes with the number of time steps, the sum of traces of covariance, and the total cost of 

the  FIRM, FIRM-Rollout, and FIRMCP methods. 

 

 
Figure 15 
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CONCLUSIONS 

a) Significance of Results 

Older path planning methods for motion planning under uncertainty incorporated the 

motion uncertainty (noise) present in an environment. The risk-minimizing optimization problem 

used for finding a path did not incorporate sensing into the algorithmic loop. As a result, it was 

much too conservative and very far from optimal. These full-width offline solvers enumerated 

every possible case, selected the best action, and found a solution in the reachable tree. We now 

incorporate the sensing uncertainty experienced in the environment into the loop, and while 

doing so, have also used an SQLG-FIRM to avoid issues such as the curse of history that we 

experience while implementing this. Previously written code allowing us to do this was 

significantly improved and made over 100 times faster by fixing several bugs over a 10-week 

period. By using perfected full-width online solvers and updating the policy found by the 

algorithm during execution at each belief state (instead of only at the beginning as in previous 

path planning algorithms), we increase accuracy and decrease the risk posed by high amounts of 

inevitable motion and sensing uncertainty in the environment. 

b) Specific Motivation Applied to Future Space Missions:  

Being able to incorporate both the motion and sensing uncertainties from the environment 

into POMDP solvers and path planning algorithms will significantly decrease the amount of 

uncertainty encountered when path planning for and during future missions. The FIRMCP 

algorithm incorporates POMCP’s locally near-optimality and online computational power with 

FIRM’s offline computational power and ability to solve large problems (Figure 14). This 

eliminates the most uncertainty from environmental data that has so far been seen in POMDP 

solvers and path planning algorithms. Such an advancement in state-of-the-art POMDP solvers 

will allow for maximum efficiency when exploring bodies in space and detailed operation during 

future space missions. 

 

PROPOSED FUTURE WORK 

The real world is full of uncertainty. Being able to model this uncertainty is very 

important for future missions and their success. Near-optimal long range solvers are in great 

need because they ensure that situations with this description can indeed be modeled. By 

continuing the editing done on previous code and by adding to the design on methods which go 

beyond the state-of-the-art such as FIRM, we can one day work our way up towards solving the 

ultimate minimization problem—that is the one presented by completely eliminating the 

uncertainties that come with path planning for space exploration.  

 

Personal Commentary on Experience at JPL with the NASA MIRO FIELDS Program: 

 My personal experience at JPL with the NASA MIRO FIELDS program was nothing 

short of phenomenal. To call it anything less than a life-changer would be an understatement. 

First, I will share a brief overview of just a couple out of a thousand neat things I got to see at 

JPL, and then go into the great experience I had with the FIELDS program. As expected, I was 

introduced to many things that I had an idea existed, but definitely not to the level I was able to 

witness here at JPL. The ALPS lab tour and the Spaceflight Operations tour were among the 

some of the greatest sights. I got to witness the room under which all NASA spaceflight 

operations take place, and have been taking place nonstop since the very first launch of Explorer 

1. Since then, the room has never been left unattended. As neat as this sounds, things became 

even more out-of-this-world when I got to see the Spaceflight Assembly Room where all 
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spacecraft missions to have left NASA’s JPL facility have been launched into space—some 

returning and some still in route. To try and describe the way these rooms looked and the things 

inside them on paper would be impossible. In addition to seeing these famous landmarks, I also 

got to see many other labs and engineering bases where research vital to our understanding of the 

universe’s contents is currently taking place. Things that people hear stories about came to life at 

JPL because I got to witness them first hand, and also see the amount of effort that goes into all 

of the little pieces. I directly observed research and ideas that are still in the works to improving 

space exploration even further, in addition to those which have already made it great. Being on 

lab was an eye-opener to something new every day.  

 The FIELDS program was just as great because after being at JPL for only a day, I 

realized that the program’s main focus is a student learning experience. Nothing was stressed 

more during my internship than the importance of learning during this time. This not only took a 

lot of the pressure off of me as a student intern, but it also maximized what I am now able to say 

that I took away from JPL having been here through the FIELDS program. I would advise the 

staff in charge not to change a single thing. I think about how smoothly and perfect everything 

was set up and organized through UCR and the education office staff and student mentors at JPL, 

and it amazes me. The amount of communication, one-on-one student contact, and the learning 

focus here through the FIELDS program at a facility such as NASA known world-wide for its 

contributions to space is quite literally indescribable. Without the FIELDS program, it would 

have been a lot harder to think that I could intern at JPL. Now, because of this opportunity that 

was made possible for me, and with the knowledge and insight I have gained here, I feel I have 

been set me up for success no matter where I go. Before coming to JPL, I did not know which 

direction my life would go after college, but now I can say that I do.  

In addition to an interesting and constant learning experience, JPL provided direction for 

my life in ways that words could never describe, and it was the FIELDS program that has made 

all of it possible by providing a path for me to JPL that was specifically made for students. This 

kind of support was exactly what I needed to figure out my next step towards a successful career. 

If I had to use an analogy to describe the experience at JPL made possible by the NASA MIRO 

FIELDS program, I would say it was like a picture worth a million words—except instead of 

looking at a picture, I got to live the picture. Thank you. 
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